Trace-based JIT compilers identify frequently executed program paths at run-time and subsequently record, compile and optimize their execution. In order to improve the performance of the generated machine instructions, JIT compilers heavily rely on dynamic analysis of the code. Existing work treats the components of a JIT compiler as a monolithic whole, tied to particular execution semantics. We propose a formal framework that facilitates the design and implementation of a tracing JIT compiler and its accompanying dynamic analyses by decoupling the tracing, optimization, and interpretation processes. This results in a framework that is more configurable and extensible than existing formal tracing models. We formalize the tracer and interpreter as two abstract state machines that communicate through a minimal, well-defined interface. Developing a tracing JIT compiler becomes possible for arbitrary interpreters that imples interface. The abstract machines also provide the necessary ho...