This paper uses partially observable Markov decision processes (POMDP’s) as a basic framework for MultiAgent planning. We distinguish three perspectives: first one is that of an omniscient agent that has access to the global state of the system, second one is the perspective of an individual agent that has access only to its local state, and the third one is the perspective of an agent that models the states of information of the other agents. We detail how the first perspective differs from the other two due to the partial observability. POMDP’s allow us to formally define the notion of optimal actions in each perspective, and to quantify the loss of performance due to partial observability, and possible gain in performance due to intelligent information exchange between the agents. As an example we consider the domain of agents in a distributed information network. There, agents have to decide how to route packets and how to share information with other agents. Though almost ...
Bharaneedharan Rathnasabapathy, Piotr J. Gmytrasie