Sciweavers

DMKD
2004
ACM

FP-tax: tree structure based generalized association rule mining

14 years 5 months ago
FP-tax: tree structure based generalized association rule mining
Data mining has been widely recognized as a powerful tool to explore added value from large-scale databases. One of data mining techniques, generalized association rule mining with taxonomy, is potential to discover more useful knowledge than ordinary flat association rule mining by taking application specific information into account. We propose pattern growth mining paradigm based FP-tax algorithm, which employs a tree structure to compress the database. Two methods to traverse the tree structure are examined : Bottom-Up and Top-Down. Experimental results show that both methods significantly outperform classic Cumulate algorithm, in particular Top-Down FP-tax can achieve two order of magnitudes better performance than Cumulate. Keywords data mining, generalized association rule
Iko Pramudiono, Masaru Kitsuregawa
Added 30 Jun 2010
Updated 30 Jun 2010
Type Conference
Year 2004
Where DMKD
Authors Iko Pramudiono, Masaru Kitsuregawa
Comments (0)