Abstract. The paper presents a novel and efficient method to generate true random numbers on FPGAs by inducing metastability in bi-stable circuit elements, e.g. flip-flops. Metastability is achieved by using precise programmable delay lines (PDL) that accurately equalize the signal arrival times to flip-flops. The PDLs are capable of adjusting signal propagation delays with resolutions higher than fractions of a pico second. In addition, a real time monitoring system is utilized to assure a high degree of randomness in the generated output bits, resilience against fluctuations in environmental conditions, as well as robustness against active adversarial attacks. The monitoring system employs a feedback loop that actively monitors the probability of output bits; as soon as any bias is observed in probabilities, it adjusts the delay through PDLs to return to the metastable operation region. Implementation on Xilinx Virtex 5 FPGAs and results of NIST randomness tests show the effect...