Sciweavers

IDA
2002
Springer

A framework for modelling virus gene expression data

14 years 6 days ago
A framework for modelling virus gene expression data
Short, high-dimensional, Multivariate Time Series (MTS) data are common in many fields such as medicine, finance and science, and any advance in modelling this kind of data would be beneficial. Nowhere is this truer than functional genomics where effective ways of analysing gene expression data are urgently needed. Progress in this area could help obtain a "global" view of biological processes, and ultimately lead to a great improvement in the quality of human life. We present a computational framework for modelling this type of data, and report experimental results of applying this framework to the analysis of gene expression data in the virology domain. The framework contains a three-step modelling strategy: correlation search, variable grouping, and short MTS modelling. Novel research is involved in each step which has been individually tested on different real-world datasets in engineering and medicine. This is the first attempt to integrate all these components into a co...
Paul Kellam, Xiaohui Liu, Nigel J. Martin, Christi
Added 19 Dec 2010
Updated 19 Dec 2010
Type Journal
Year 2002
Where IDA
Authors Paul Kellam, Xiaohui Liu, Nigel J. Martin, Christine A. Orengo, Stephen Swift, Allan Tucker
Comments (0)