— Measurement-based admission control (MBAC) is an attractive mechanism to concurrently offer quality of service (QoS) to users, without requiring a priori traffic specification and on-line policing. However, several aspects of such a system need to be clearly understood in order to devise robust MBAC schemes, i.e., schemes that can match a given QoS target despite the inherent measurement uncertainty, and without the tuning of external system parameters. We study the impact of measurement uncertainty, flow arrival, departure dynamics, and of estimation memory on the performance of a generic MBAC system in a common analytical framework. We show that a certainty equivalence assumption, i.e., assuming that the measured parameters are the real ones, can grossly compromise the target performance of the system. We quantify the improvement in performance as a function of the length of the estimation window and an adjustment of the target QoS. We demonstrate the existence of a critical t...
Matthias Grossglauser, David N. C. Tse