By a well-known result of Cook and Reckhow [4, 12], all Frege systems for the Classical Propositional Calculus (CPC) are polynomially equivalent. Mints and Kojevnikov [11] have recently shown p-equivalence of Frege systems for the Intuitionistic Propositional Calculus (IPC) in the standard language, building on a description of admissible rules of IPC by Iemhoff [8]. We prove a similar result for an infinite family of normal modal logics, including K4, GL, S4, and S4Grz.