In many pattern recognition applications, high-dimensional feature vectors impose a high computational cost as well as the risk of "overfitting". Feature Selection addresses the dimensionality reduction problem by determining a subset of available features which is most essential for classification. This paper presents a novel feature selection method named filtered and supported sequential forward search (FS_SFS) in the context of support vector machines (SVM). In comparison with conventional wrapper methods that employ the SFS strategy, FS_SFS has two important properties to reduce the time of computation. First, it dynamically maintains a subset of samples for the training of SVM. Because not all the available samples participate in the training process, the computational cost to obtain a single SVM classifier is decreased. Secondly, a new criterion, which takes into consideration both the discriminant ability of individual features and the correlation between them, is pr...
Yi Liu, Yuan F. Zheng