We extend the reach of functional encryption schemes that are provably secure under simple assumptions against unbounded collusion to include function-hiding inner product schemes. Our scheme is a private key functional encryption scheme, where ciphertexts correspond to vectors x, secret keys correspond to vectors y, and a decryptor learns x, y . Our scheme employs asymmetric bilinear maps and relies only on the SXDH assumption to satisfy a natural indistinguishability-based security notion where arbitrarily many key and ciphertext vectors can be simultaneously changed as long as the key-ciphertext dot product relationships are all preserved.