Sciweavers

TFS
2008

A Functional-Link-Based Neurofuzzy Network for Nonlinear System Control

13 years 10 months ago
A Functional-Link-Based Neurofuzzy Network for Nonlinear System Control
Abstract--This study presents a functional-link-based neurofuzzy network (FLNFN) structure for nonlinear system control. The proposed FLNFN model uses a functional link neural network (FLNN) to the consequent part of the fuzzy rules. This study uses orthogonal polynomials and linearly independent functions in a functional expansion of the FLNN. Thus, the consequent part of the proposed FLNFN model is a nonlinear combination of input variables. An online learning algorithm, which consists of structure learning and parameter learning, is also presented. The structure learning depends on the entropy measure to determine the number of fuzzy rules. The parameter learning, based on the gradient descent method, can adjust the shape of the membership function and the corresponding weights of the FLNN. Furthermore, results for the universal approximator and a convergence analysis of the FLNFN model are proven. Finally, the FLNFN model is applied in various simulations. Results of this study dem...
Cheng-Hung Chen, Cheng-Jian Lin, Chin-Teng Lin
Added 28 Jan 2011
Updated 28 Jan 2011
Type Journal
Year 2008
Where TFS
Authors Cheng-Hung Chen, Cheng-Jian Lin, Chin-Teng Lin
Comments (0)