Among various document clustering algorithms that have been proposed so far, the most useful are those that automatically reveal the number of clusters and assign each target document to exactly one cluster. However, in many real situations, there not exists an exact boundary between different clusters. In this work, we introduce a fuzzy version of the MajorClust algorithm. The proposed clustering method assigns documents to more than one category by taking into account a membership function for both, edges and nodes of the corresponding underlying graph. Thus, the clustering problem is formulated in terms of weighted fuzzy graphs. The fuzzy approach permits to decrease some negative effects which appear in clustering of large-sized corpora with noisy data.