One of the techniques used to support decisions in uncertain environments is the Fuzzy TOPSIS method. However, from crisp data, this method considers only one fuzzy set in their analysis, besides being a strictly mathematical optimization technique. This article proposes extensions to the original Fuzzy TOPSIS, exploring two distinct versions: to increase the method with the necessary resources for the mathematics process to consider the membership values of the input data in more than one fuzzy set and to aggregate to method the empiric knowledge of an expert represented through fuzzy rules. In such case, the method, named by Fuzzy F-TOPSIS (Fuzzy Flexible TOPSIS), is proposed with the objective of improving the Fuzzy TOPSIS ability to deal with uncertainty through the combination of the mathematical process involved in the original Fuzzy TOPSIS with the expert empirical knowledge. A case study is presented to validate the proposal.
Fabio J. J. Santos, Heloisa A. Camargo