Sciweavers

ECCV
2010
Springer

Gabor Feature based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary

14 years 5 months ago
Gabor Feature based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary
Abstract. By coding the input testing image as a sparse linear combination of the training samples via l1-norm minimization, sparse representation based classification (SRC) has been recently successfully used for face recognition (FR). Particularly, by introducing an identity occlusion dictionary to sparsely code the occluded portions in face images, SRC can lead to robust FR results against occlusion. However, the large amount of atoms in the occlusion dictionary makes the sparse coding computationally very expensive. In this paper, the image Gabor-features are used for SRC. The use of Gabor kernels makes the occlusion dictionary compressible, and a Gabor occlusion dictionary computing algorithm is then presented. The number of atoms is significantly reduced in the computed Gabor occlusion dictionary, which greatly reduces the computational cost in coding the occluded face images while improving greatly the SRC accuracy. Experiments on representative face databases with variations ...
Added 02 Jul 2010
Updated 02 Jul 2010
Type Conference
Year 2010
Where ECCV
Comments (0)