—The general Gaussian multiple-access wiretap channel (GGMAC-WT) and the Gaussian two-way wiretap channel (GTW-WT) are considered. In the GGMAC-WT, multiple users communicate with an intended receiver in the presence of an eavesdropper who receives their signals through another GMAC. In the GTW-WT, two users communicate with each other over a common Gaussian channel, with an eavesdropper listening through a GMAC. A secrecy measure that is suitable for this multiterminal environment is defined, and achievable secrecy rate regions are found for both channels. For both cases, the power allocations maximizing the achievable secrecy sum rate are determined. It is seen that the optimum policy may prevent some terminals from transmission in order to preserve the secrecy of the system. Inspired by this construct, a new scheme cooperative jamming is proposed, where users who are prevented from transmitting according to the secrecy sum rate maximizing power allocation policy “jam” the eav...