Sciweavers

ASIACRYPT
2003
Springer

Generalized Powering Functions and Their Application to Digital Signatures

14 years 5 months ago
Generalized Powering Functions and Their Application to Digital Signatures
This paper investigates some modular powering functions suitable for cryptography. It is well known that the Rabin encryption function is a 4-to-1 mapping and breaking its one-wayness is secure under the factoring assumption. The previously reported encryption schemes using a powering function are variants of either the 4-to-1 mapping or higher n-to-1 mapping, where n > 4. In this paper, we propose an optimized powering function that is a 3-to-1 mapping using a p2 q-type modulus. The one-wayness of the proposed powering function is as hard as the infeasibility of the factoring problem. We present an efficient algorithm for computing the decryption for a p2 q-type modulus, which requires neither modular inversion nor division. Moreover, we construct new provably secure digital signatures as an application of the optimized functions. In order to achieve provable security in the random oracle model, we usually randomize a message using random hashing or padding. However, we have to com...
Hisayoshi Sato, Tsuyoshi Takagi, Satoru Tezuka, Ka
Added 06 Jul 2010
Updated 06 Jul 2010
Type Conference
Year 2003
Where ASIACRYPT
Authors Hisayoshi Sato, Tsuyoshi Takagi, Satoru Tezuka, Kazuo Takaragi
Comments (0)