Word lattice decoding has proven useful in spoken language translation; we argue that it provides a compelling model for translation of text genres, as well. We show that prior work in translating lattices using finite state techniques can be naturally extended to more expressive synchronous context-free grammarbased models. Additionally, we resolve a significant complication that non-linear word lattice inputs introduce in reordering models. Our experiments evaluating the approach demonstrate substantial gains for ChineseEnglish and Arabic-English translation.