We introduce the notion of query substitution, that is, generating a new query to replace a user's original search query. Our technique uses modifications based on typical substitutions web searchers make to their queries. In this way the new query is strongly related to the original query, containing terms closely related to all of the original terms. This contrasts with query expansion through pseudo-relevance feedback, which is costly and can lead to query drift. This also contrasts with query relaxation through boolean or TFIDF retrieval, which reduces the specificity of the query. We define a scale for evaluating query substitution, and show that our method performs well at generating new queries related to the original queries. We build a model for selecting between candidates, by using a number of features relating the query-candidate pair, and by fitting the model to human judgments of relevance of query suggestions. This further improves the quality of the candidates gen...