Recently, there are several generic transformation techniques proposed for converting unforgeable signature schemes (the message in the forgery has not been signed yet) into strongly unforgeable ones (the message in the forgery could have been signed previously). Most of the techniques are based on trapdoor hash functions and all of them require adding supplementary components onto the original key pair of the signature scheme. In this paper, we propose a new generic transformation which converts any unforgeable signature scheme into a strongly unforgeable one, and also keeps the key pair of the signature scheme unchanged. Our technique is based on strong one-time signature schemes. We show that they can be constructed efficiently from any one-time signature scheme that is based on one-way functions. The performance of our technique also compares favorably with that of those trapdoorhash-function-based ones. In addition, this new generic transformation can also be used for attaining st...
Qiong Huang, Duncan S. Wong, Yiming Zhao