Our agent-based model of genotype editing is defined by two distinct genetic components: a coding portion encoding phenotypic solutions, and a non-coding portion used to edit the coding material. This set up leads to an indirect, stochastic genotype/phenotype mapping which captures essential aspects of RNA editing. We show that, in drastically changing environments, genotype editing leads to qualitatively different solutions from those obtained via evolutionary algorithms that only use coding genetic material. In particular, we show how genotype editing leads to the emergence of regulatory signals, and also to a resilient memory of a previous environment