Geometric Particle Swarm Optimization (GPSO) is a recently introduced formal generalization of traditional Particle Swarm Optimization (PSO) that applies naturally to both continuous and combinatorial spaces. Differential Evolution (DE) is similar to PSO but it uses different equations governing the motion of the particles. This paper generalizes the DE algorithm to combinatorial search spaces extending its geometric interpretation to these spaces, analogously as what was done for the traditional PSO algorithm. Using this formal algorithm, Geometric Differential Evolution (GDE), we formally derive the specific GDE for the Hamming space associated with binary strings and present experimental results on a standard benchmark of problems.