Geometric semigroup theory is the systematic investigation of finitely-generated semigroups using the topology and geometry of their associated automata. In this article we show how a number of easily-defined expansions on finite semigroups and automata lead to simplifications of the graphs on which the corresponding finite semigroups act. We show in particular that every finite semigroup can be finitely expanded so that the expansion acts on a labeled directed graph which resembles the right Cayley graph of a free Burnside semigroup in many respects. Contents