Sciweavers

GD
2009
Springer

Geometric Simultaneous Embeddings of a Graph and a Matching

14 years 5 months ago
Geometric Simultaneous Embeddings of a Graph and a Matching
The geometric simultaneous embedding problem asks whether two planar graphs on the same set of vertices in the plane can be drawn using straight lines, such that each graph is plane. Geometric simultaneous embedding is a current topic in graph drawing and positive and negative results are known for various classes of graphs. So far only connected graphs have been considered. In this paper we present the first results for the setting where one of the graphs is a matching. In particular, we show that there exists a planar graph and a matching which do not admit a geometric simultaneous embedding. This generalizes the same result for a planar graph and a path. On the positive side, we describe algorithms that compute a geometric simultaneous embedding of a matching and a wheel, outerpath, or tree. Our drawing algorithms minimize the number of orientations used to draw the edges of the matching. Specifically, when embedding a matching and a tree, we can draw all matching edges horizonta...
Sergio Cabello, Marc J. van Kreveld, Giuseppe Liot
Added 24 Jul 2010
Updated 24 Jul 2010
Type Conference
Year 2009
Where GD
Authors Sergio Cabello, Marc J. van Kreveld, Giuseppe Liotta, Henk Meijer, Bettina Speckmann, Kevin Verbeek
Comments (0)