Abstract--This paper addresses the problem of efficient representation of scenes captured by distributed omnidirectional vision sensors. We propose a novel geometric model to describe the correlation between different views of a 3-D scene. We first approximate the camera images by sparse expansions over a dictionary of geometric atoms. Since the most important visual features are likely to be equivalently dominant in images from multiple cameras, we model the correlation between corresponding features in different views by local geometric transforms. For the particular case of omnidirectional images, we define the multiview transforms between corresponding features based on shape and epipolar geometry constraints. We apply this geometric framework in the design of a distributed coding scheme with side information, which builds an efficient representation of the scene without communication between cameras. The Wyner