Background: Modern high throughput experimental techniques such as DNA microarrays often result in large lists of genes. Computational biology tools such as clustering are then used to group together genes based on their similarity in expression profiles. Genes in each group are probably functionally related. The functional relevance among the genes in each group is usually characterized by utilizing available biological knowledge in public databases such as Gene Ontology (GO), KEGG pathways, association between a transcription factor (TF) and its target genes, and/or gene networks. Results: We developed GOAL: Gene Ontology AnaLyzer, a software tool specifically designed for the functional evaluation of gene groups. GOAL implements and supports efficient and statistically rigorous functional interpretations of gene groups through its integration with available GO, TF-gene association data, and association with KEGG pathways. In order to facilitate more specific functional characteriza...
Alain B. Tchagang, Alexander Gawronski, Hugo B&eac