In this paper, we propose an efficient acquisition scheme for GPS receivers. It is shown that GPS signals can be effectively sampled and detected using a bank of randomized correlators with much fewer chip-matched filters than those used in existing GPS signal acquisition algorithms. The latter use correlations with all possible shifted replicas of the satellite-specific C/A code and an exhaustive search for peaking signals over the delay-Doppler space. Our scheme is based on the recently proposed analog compressed sensing framework, and consists of a multichannel sampling structure with far fewer correlators. The compressive multichannel sampler outputs are linear combinations of a vector whose support tends to be sparse; by detecting its support one can identify the strongest satellite signals in the field of view and pinpoint the correct code-phase and Doppler shifts for finer resolution during tracking. The analysis in this paper demonstrates that GPS signals can be detected ...
Xiao Li, Andrea Rueetschi, Yonina C. Eldar, Anna S