Quadratic optimization lies at the very heart of many structural pattern recognition and computer vision problems, such as graph matching, object recognition, image segmentation, etc., and it is therefore of crucial importance to devise algorithmic solutions that are both efficient and effective. As it turns out, a large class of quadratic optimization problems can be formulated in terms of so-called “standard quadratic programs” (StQPs), which ask for finding the extrema of a quadratic polynomial over the standard simplex. Computationally, the standard approach for attacking this class of problems is to use replicator dynamics, a well-known family of algorithms from evolutionary game theory inspired by Darwinian selection processes. Despite their effectiveness in finding good solutions in a variety of applications, however, replicator dynamics suffer from being computationally expensive, as they require a number of operations per step which grows quadratically with the dimen...