Sciweavers

SIAMDM
1998

The Graphs with All Subgraphs T-Perfect

13 years 11 months ago
The Graphs with All Subgraphs T-Perfect
The richest class of t-perfect graphs known so far consists of the graphs with no so-called odd-K4. Clearly, these graphs have the special property that they are hereditary t-perfect in the sense that every subgraph is also t-perfect, but they are not the only ones. In this paper we characterize hereditary t-perfect graphs by showing that any non–t-perfect graph contains a non–tperfect subdivision of K4, called a bad-K4. To prove the result we show which “weakly 3-connected” graphs contain no bad-K4; as a side-product of this we get a polynomial time recognition algorithm. It should be noted that our result does not characterize t-perfection, as that is not maintained when taking subgraphs but only when taking induced subgraphs. AMS subject classifications. 05C75, 05C70, 90C10, 90C27 Key words. stable sets, polyhedra, odd circuits, decomposition PII. S0895480196306361
A. M. H. Gerards, F. Bruce Shepherd
Added 23 Dec 2010
Updated 23 Dec 2010
Type Journal
Year 1998
Where SIAMDM
Authors A. M. H. Gerards, F. Bruce Shepherd
Comments (0)