Grid and distributed public computing schemes has become an essential tool for many scientific fields including bioinformatics, computational biology and systems biology. The adoption of these technologies has given rise to a wide range of projects and contributions that provide various ways of setting up these environments and exploiting their potential resources and services for different domains of applications. This paper aims to provide a distilled overview of some of the major projects, technologies and resources employed in the area of structural proteomics. The major emphasis would be to briefly comment on various approaches related to the gridification and parallelization of some flagship legacy applications, tools and data resources related to key structural proteomics problems such as protein structure prediction, folding and comparison. The comments are based on theoretical analysis of some interesting parameters such as performance gain after gridification, user level inte...