Sciweavers

JCO
2007

Group testing in graphs

13 years 11 months ago
Group testing in graphs
This paper studies the group testing problem in graphs as follows. Given a graph G = (V, E), determine the minimum number t(G) such that t(G) tests are sufficient to identify an unknown edge e with each test specifies a subset X ⊆ V and answers whether the unknown edge e is in G[X] or not. Damaschke proved that log2 e(G) ≤ t(G) ≤ log2 e(G) + 1 for any graph G, where e(G) is the number of edges of G. While there are infinitely many complete graphs that attain the upper bound, it was conjectured by Chang and Hwang that the lower bound is attained by all bipartite graphs. Later, they proved that the conjecture is true for complete bipartite graphs. Chang and Juan verified the conjecture for bipartite graphs G with e(G) ≤ 24 or 2k−1 < e(G) ≤ 2k−1 + 2k−3 + 2k−6 + 19 · 2 k−7 2 for k ≥ 5. This paper proves the conjecture for bipartite graphs G with e(G) ≤ 25 or 2k−1 < e(G) ≤ 2k−1 + 2k−3 + 2k−4 + 2k−5 + 2k−6 + 2k−7 + 27 · 2 k−8 2 − 1 for ...
Justie Su-tzu Juan, Gerard J. Chang
Added 15 Dec 2010
Updated 15 Dec 2010
Type Journal
Year 2007
Where JCO
Authors Justie Su-tzu Juan, Gerard J. Chang
Comments (0)