The aim of this paper is twofold. On one hand we present an approach to the general problem of nonlinear control in the framework of (differentiable) groupoids, which, in our opinion deserves further investigation. On the other hand, using recently-developed algebraic tools, we show that for a control system whose state space is a semisimple Lie group (like SO(3)), it is possible to reach a dense subset of the state space using just two properly chosen discrete controls, and this property is robust with respect to the choice of controls.