—Medial representations of shapes are useful due to their use of an object-centered coordinate system that directly captures intuitive notions of shape such as thickness, bending, and elongation. However, it is well known that an object’s medial axis transform (MAT) is unstable with respect to small perturbations of its boundary. This instability results in additional, unwanted branches in the skeletons, which must be pruned in order to recover the portions of the skeletons arising purely from the uncorrupted shape information. Almost all approaches to skeleton pruning compute a significance measure for each branch according to some heuristic criteria, and then prune the least significant branches first. Current approaches to branch significance computation can be classified as either local, solely using information from a neighborhood surrounding each branch, or global, using information about the shape as a whole. In this paper, we propose a third, groupwise approach to branch si...
Aaron D. Ward, Ghassan Hamarneh