The aggressive evolution of the semiconductor industry — smaller process geometries, higher densities, and greater chip complexity — has provided design engineers the means to create complex, high-performance Systems-on-a-Chip (SoC) designs. Such SoC designs typically have more than one processor and huge memory, all on the same chip. Dealing with the global onchip memory allocation/de-allocation in a dynamic yet deterministic way is an important issue for the upcoming billion transistor multiprocessor SoC designs. To achieve this, we propose a memory management hierarchy we call Two-Level Memory Management. To implement this memory management scheme — which presents a paradigm shift in the way designers look at on-chip dynamic memory allocation — we present a System-on-a-Chip Dynamic Memory Management Unit (SoCDMMU) for allocation of the global on-chip memory, which we refer to as Level Two memory management (Level One is the operating system management of memory allocated to...