A Wireless Sensor Network (WSN) for Structural Health Monitoring (SHM) is designed, implemented, deployed and tested on the 4200ft long main span and the south tower of the Golden Gate Bridge (GGB). Ambient structural vibrations are reliably measured at a low cost and without interfering with the operation of the bridge. Requirements that SHM imposes on WSN are identified and new solutions to meet these requirements are proposed and implemented. In the GGB deployment, 64 nodes are distributed over the main span and the tower, collecting ambient vibrations synchronously at 1kHz rate, with less than 10µs jitter, and with an accuracy of 30µG. The sampled data is collected reliably over a 46-hop network, with a bandwidth of 441B/s at the 46th hop. The collected data agrees with theoretical models and previous studies of the bridge. The deployment is the largest WSN for SHM. Categories and Subject Descriptors C.3 [Special-Purpose and Application-Based Systems]: Realtime and Embedded Sys...
Sukun Kim, Shamim Pakzad, David E. Culler, James D