In an effort to push the envelope of system performance, microprocessor designs are continually exploiting higher levels of instruction-level parallelism, resulting in increasing bandwidth demands on the address translation mechanism. Most current microprocessor designs meet this demand with a multi-ported TLB. While this design provides an excellent hit rate at each port, its access latency and area grow very quickly as the number of ports is increased. As bandwidth demands continue to increase, multi-ported designs will soon impact memory access latency. We present four high-bandwidth address translation mechanisms with latency and area characteristics that scale better than a multiported TLB design. We extend traditional high-bandwidth memory design techniques to address translation, developing interleaved and multi-level TLB designs. In addition, we introduce two new designs crafted specifically for high-bandwidth address translation. Piggyback ports are introduced as a technique ...
Todd M. Austin, Gurindar S. Sohi