As buffer-less crossbar scheduling algorithms reach their practical limitations due to higher port numbers and data rates, internally buffered crossbar (IBC) switches have gained a lot of interest recently due to their great potential in solving the complexity and scalability issues faced by their buffer-less predecessors. The IBC switching architecture combined with the virtual output queueing (VOQ) architecture was shown, through distributed scheduling algorithms, to be able to sustain the current and expected increases in Internet throughput rates. Due to the architectural similarity between the input queued (IQ) and IBC switches, all the algorithms proposed for the latter were just a simple mapping of earlier algorithms proposed for the former. In this paper, we propose a set of scheduling schemes that are purely advocated for the VOQ/IBC switch architecture. We first address the issue of the internal buffers importance in the arbitration process. We propose a weighted scheduling ...