A scalable video coder cannot be equally efficient over a wide range of bit-rates unless both the video data and the motion information are scalable. We propose a wavelet-based, highly scalable video compression scheme with rate-scalable motion coding. The proposed method involves the construction of quality layers for the coded sample data and a separate set of quality layers for the coded motion parameters. When the motion layers are truncated, the decoder receives a quantized version of the motion parameters used to code the sample data. The effect of motion parameter quantization on the reconstructed video distortion is described by a linear model. The optimal tradeoff between the motion and subband bit-rates is determined after compression. We propose two methods to determine the optimal tradeoff, one of which explicitly utilizes the linear model. This method performs comparably to a brute force search method, reinforcing the validity of the linear model itself. Experimental resu...