In this paper we address the problem of classifying images, by exploiting global features that describe color and illumination properties, and by using the statistical learning paradigm. The contribution of this paper is twofold. First, we show that histogram intersection has the required mathematical properties to be used as a kernel function for Support Vector Machines (SVMs). Second, we give two examples of how a SVM, equipped with such a kernel, can achieve very promising results on image classi?cation based on color information.