One of the most important and challenging questions in the area of clustering is how to choose the best-fitting algorithm and parameterization to obtain an optiml clustering for the considered data. The clustering aggregation concept tries to bypass this problem by generating a set of separate, heterogeneous partitionings of the same data set, from which an aggregate clustering is derived. Up to now, almost every existing aggregation approach combines given crisp clusterings on the basis of pair-wise similarities. In this paper, we regard an input set of soft clusterings and show that it contains additional information that is efficiently useable for the aggregation. Our approach introduces an expanison of mentioned pair-wise similarities, allowing control and adjustment of the aggregation process and its result. Our exhaustive experiments show that our flexible approach offers adaptive results, improved identification of structures and high usability.