This paper proposes a hybrid foreground object detection method suitable for the marine surveillance applications. Our approach combines an existing foreground object detection method with an image color segmentation technique to improve accuracy. The foreground segmentation method employs a Bayesian decision framework, while the color segmentation part is graph-based and relies on the local variation of edges. We also establish the set of requirements any practical marine surveillance algorithm should fulfill, and show that our method conforms to these. Experiments show good results in the domain of marine surveillance sequences.