Sciweavers

CVPR
2007
IEEE

Hybrid learning of large jigsaws

15 years 2 months ago
Hybrid learning of large jigsaws
A jigsaw is a recently proposed generative model that describes an image as a composition of non-overlapping patches of varying shape, extracted from a latent image. By learning the latent jigsaw image which best explains a set of images, it is possible to discover the shape, size and appearance of repeated structures in the images. A challenge when learning this model is the very large space of possible jigsaw pixels which can potentially be used to explain each image pixel. The previous method of inference for this model scales linearly with the number of jigsaw pixels, making it unusable for learning the large jigsaws needed for many practical applications. In this paper, we make three contributions that enable the learning of large jigsaws - a novel sparse belief propagation algorithm, a hybrid method which significantly improves the sparseness of this algorithm, and a method that uses these techniques to make learning of large jigsaws feasible. We provide detailed analysis of how...
Julia A. Lasserre, Anitha Kannan, John M. Winn
Added 12 Oct 2009
Updated 28 Oct 2009
Type Conference
Year 2007
Where CVPR
Authors Julia A. Lasserre, Anitha Kannan, John M. Winn
Comments (0)