Sciweavers

ICML
2004
IEEE

Hyperplane margin classifiers on the multinomial manifold

15 years 1 months ago
Hyperplane margin classifiers on the multinomial manifold
The assumptions behind linear classifiers for categorical data are examined and reformulated in the context of the multinomial manifold, the simplex of multinomial models furnished with the Riemannian structure induced by the Fisher information. This leads to a new view of hyperplane classifiers which, together with a generalized margin concept, shows how to adapt existing margin-based hyperplane models to multinomial geometry. Experiments show the new classification framework to be effective for text classification, where the categorical structure of the data is modeled naturally within the multinomial family.
Guy Lebanon, John D. Lafferty
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2004
Where ICML
Authors Guy Lebanon, John D. Lafferty
Comments (0)