Koza has shown how automatically defined functions (ADFs) can reduce computational effort in the GP paradigm. In Koza's ADF, as well as in standard GP, an improvement in a part of a program (an ADF or a main body) can only be transferred via crossover. In this article, we consider whether it is a good idea to transfer immediately improvements found by a single individual to the whole population. A system that implements this idea has been proposed and tested for the EVEK-5PARlTY and EVEN-6-PARlTYproblems. Results are very encouraging: computational effort is reduced (compared to Koza's ADFs) and the system seems to be less prone to early stagnation. Finally, our work suggests further research where less extreme approaches to our idea could be tested.