Significant progress has been made towards making ad hoc networks secure and DoS resilient. However, little attention has been focused on quantifying DoS resilience: Do ad hoc networks have sufficiently redundant paths and counter-DoS mechanisms to make DoS attacks largely ineffective? Or are there attack and system factors that can lead to devastating effects? In this paper, we design and study DoS attacks in order to assess the damage that difficult-to-detect attackers can cause. The first attack we study, called the JellyFish attack, is targeted against closed-loop flows such as TCP; although protocol compliant, it has devastating effects. The second is the Black Hole attack, which has effects similar to the JellyFish, but on open-loop flows. We quantify via simulations and analytical modeling the scalability of DoS attacks as a function of key performance parameters such as mobility, system size, node density, and counter-DoS strategy. One perhaps surprising result is that such DoS...
Imad Aad, Jean-Pierre Hubaux, Edward W. Knightly