Sciweavers

GECCO
2008
Springer

The impact of population size on code growth in GP: analysis and empirical validation

14 years 7 days ago
The impact of population size on code growth in GP: analysis and empirical validation
The crossover bias theory for bloat [18] is a recent result which predicts that bloat is caused by the sampling of short, unfit programs. This theory is clear and simple, but it has some weaknesses: (1) it implicitly assumes that the population is large enough to allow sampling of all relevant program sizes (although it does explain what to expect in the many practical cases where this is not true, e.g., because the population is small); (2) it does not explain what is meant by its assumption that short programs are unfit. In this paper we discuss these weaknesses and propose a refined version of the crossover bias theory that clarifies the relationship between bloat and finite populations, and explains what features of the fitness landscape cause bloat to occur. The theory, in particular, predicts that smaller populations will bloat more slowly than larger ones. Additionally, the theory predicts that bloat will only be observed in problems where short programs are less fit tha...
Riccardo Poli, Nicholas Freitag McPhee, Leonardo V
Added 09 Nov 2010
Updated 09 Nov 2010
Type Conference
Year 2008
Where GECCO
Authors Riccardo Poli, Nicholas Freitag McPhee, Leonardo Vanneschi
Comments (0)