Sciweavers

PADL
2015
Springer

Implementation and Performance of Probabilistic Inference Pipelines

8 years 7 months ago
Implementation and Performance of Probabilistic Inference Pipelines
Abstract. In order to handle real-world problems, state-of-the-art probabilistic logic and learning frameworks, such as ProbLog, reduce the expensive inference to an efficient Weighted Model Counting. To do so ProbLog employs a sequence of transformation steps, called an inference pipeline. Each step in the probabilistic inference pipeline is called a pipeline component. The choice of the mechanism to implement a component can be crucial to the performance of the system. In this paper we describe in detail different ProbLog pipelines. Then we perform a empirical analysis to determine which components have a crucial impact on the efficiency. Our results show that the Boolean formula conversion is the crucial component in an inference pipeline. Our main contributions are the thorough analysis of ProbLog inference pipelines and the
Dimitar Sht. Shterionov, Gerda Janssens
Added 16 Apr 2016
Updated 16 Apr 2016
Type Journal
Year 2015
Where PADL
Authors Dimitar Sht. Shterionov, Gerda Janssens
Comments (0)