Sciweavers

TELSYS
2010

An improved Hurst parameter estimator based on fractional Fourier transform

13 years 9 months ago
An improved Hurst parameter estimator based on fractional Fourier transform
A fractional Fourier transform (FrFT) based estimation method is introduced in this paper to analyze the long range dependence (LRD) in time series. The degree of LRD can be characterized by the Hurst parameter. The FrFT-based estimation of Hurst parameter proposed in this paper can be implemented efficiently allowing very large data set. We used fractional Gaussian noises (FGN) which typically possesses long-range dependence with known Hurst parameters to test the accuracy of the proposed Hurst parameter estimator. For justifying the advantage of the proposed estimator, some other existing Hurst parameter estimation methods, such as wavelet-based method and a global estimator based on dispersional analysis, are compared. The proposed estimator can process the very long experimental time series locally to achieve a reliable estimation of the Hurst parameter.
Yangquan Chen, Rongtao Sun, Anhong Zhou
Added 31 Jan 2011
Updated 31 Jan 2011
Type Journal
Year 2010
Where TELSYS
Authors Yangquan Chen, Rongtao Sun, Anhong Zhou
Comments (0)