Background: Mass spectrometry has become a standard method by which the proteomic profile of cell or tissue samples is characterized. To fully take advantage of tandem mass spectrometry (MS/MS) techniques in large scale protein characterization studies robust and consistent data analysis procedures are crucial. In this work we present a machine learning based protocol for the identification of correct peptide-spectrum matches from Sequest database search results, improving on previously published protocols. Results: The developed model improves on published machine learning classification procedures by 6% as measured by the area under the ROC curve. Further, we show how the developed model can be presented as an interpretable tree of additive rules, thereby effectively removing the `black-box' notion often associated with machine learning classifiers, allowing for comparison with expert rule-of-thumb. Finally, a method for extending the developed peptide identification protocol t...