Sciweavers

ICPR
2010
IEEE

Improved Shadow Removal for Robust Person Tracking in Surveillance Scenarios

14 years 6 months ago
Improved Shadow Removal for Robust Person Tracking in Surveillance Scenarios
Shadow detection and removal is an important step employed after foreground detection, in order to improve the segmentation of objects for tracking. Methods reported in the literature typically have a significant trade-off between the shadow detection rate (classifying true shadow areas as shadows) and the shadow discrimination rate (discrimination between shadows and foreground). We propose a method that is able to achieve good performance in both cases, leading to improved tracking in surveillance scenarios. Chromacity information is first used to create a mask of candidate shadow pixels, followed by employing gradient information to remove foreground pixels that were incorrectly included in the mask. Experiments on the CAVIAR dataset indicate that the proposed method leads to considerable improvements in multiple object tracking precision and accuracy.
Andres Sanin, Conrad Sanderson, Brian Carrington L
Added 23 Jun 2010
Updated 23 Jun 2010
Type Conference
Year 2010
Where ICPR
Authors Andres Sanin, Conrad Sanderson, Brian Carrington Lovell
Comments (0)