Sciweavers

ICONIP
2008

Improvement of Practical Recurrent Learning Method and Application to a Pattern Classification Task

14 years 1 months ago
Improvement of Practical Recurrent Learning Method and Application to a Pattern Classification Task
Practical Recurrent Learning (PRL) has been proposed as a simple learning algorithm for recurrent neural networks[1][2]. This algorithm enables learning with practical order O(n2 ) of memory capacity and computational cost, which cannot be realized by conventional Back Propagation Through Time (BPTT) or Real Time Recurrent Learning (RTRL). It was shown in the previous work[1] that 3-bit parity problem could be learned successfully by PRL, but the learning performance was quite inferior to BPTT. In this paper, a simple calculation is introduced to prevent monotonous oscillations from being biased to the saturation range of the sigmoid function during learning. It is shown that the learning performance of the PRL method can be improved in the 3-bit parity problem. Finally, this improved PRL is applied to a scanned digit pattern classification task for which the results are inferior but comparable to the conventional BPTT.
Mohamad Faizal Bin Samsudin, Katsunari Shibata
Added 29 Oct 2010
Updated 29 Oct 2010
Type Conference
Year 2008
Where ICONIP
Authors Mohamad Faizal Bin Samsudin, Katsunari Shibata
Comments (0)