Network intrusion detection systems (NIDS) make extensive use of regular expressions as attack signatures. Internally, NIDS represent and operate these signatures using finite automata. Existing representations of finite automata present a wellknown time-space tradeoff: Deterministic automata (DFAs) provide fast matching but are memory intensive, while non-deterministic automata (NFAs) are space-efficient but are several orders of magnitude slower than DFAs. This time/space tradeoff has motivated much recent research, primarily with a focus on improving the space-efficiency of DFAs, often at the cost of reducing their performance. This paper presents NFA-OBDDs, a symbolic representation of NFAs that retains their spaceefficiency while improving their time-efficiency. Experiments using Snort HTTP and FTP signature sets show that an NFA-OBDD-based representation of regular expressions can outperform traditional NFAs by up to three orders of magnitude and is competitive with a varian...